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Abstract. For the fifth-order Korleweg-de Vries equation with a small pammeter multiplying 
the highestdrrivative term it is h o w  that solitary wavcs are non-local, and are accompanied by 
co-propagating oscillatory waves of small amplitude and short wavelength. Here we report on 
Some preliminary results for mutual interactions of these waves. First we impose a quantization 
condition upon a chain of solitary waves to obtain a periodic solution. Theo we compute the 
interaction force between two neighbouring waves and hence estimate the conditions for a bound 
state to occur. 

1. Introduction 

The fifth-order Korteweg-de Vries equation 

has recently attracted much attention as a model equation for the study of non-local solitary 
waves (see for instance Pomeau eta[ (1988), Boyd (1991) and Grimshaw and Joshi (1992)). 
Interest centres on the case when the parameter E is small, when equation (1) can be regarded 
as providing a singular perturbation of the Korteweg-rk Vries equation. It is now known that 
symmetric solitary-wave solutions of equation (I)  are not localized, and are accompanied 
by co-propagating oscillatory waves of small amplitude 01 and !age wavenumber k .  Indeed, 
oscillatory waves with phase speed c have the linear dispersion relation 

c = -kZ + 2 k 4 .  (2) 

These can 
k2 e-=.  

then co-propagate with solitary waves of positive phase speed C whenever 

In the afore-mentioned references and elsewhere it has been established that this 
resonance between a solitary wave and small-amplitude short waves in fact occurs and 
is described asymptotically by 

U - us(x - cf) + a  sin(k1.x - crl - 6 ) .  (3) 

Here the solitary-wave part us is given by 

us - a sechzy(x - ct) + O(E’) (4) 
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where 
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(5) c = 4y2 + 16c2y2 a = 2y 2 . 

The leading term in us is just the well known solitary wave solution of the Korteweg-de 
Vries equation. The amplitude 01 of the oscillatory waves is given by 

01 - (b/c2)  exp(-n /2~y)  (6) 

and we note that it is exponentially small as c + 0. The phase d of the oscillatory waves 
is related to the parameter b in (6) by the formula 

bcos8  = -nK (7) 

where K is a known numerical constant (K x -19.97). It is convenient to let y be the 
parameter describing the solitary wave component u s .  In terms of y .  we can use (5) in (2) 
to obtain 

c2k2 = 1 + 4e2y2  

and, in particular, we note that k - E-’  as E + 0. With y fixed the asymptotic expression 
(3) describes a oneparameter family of symmetric non-local solitary waves characterized 
by the phase shift 6 .  Boyd (1991) has called these ‘nanopterons’ md drawn attention to the 
prevalence of non-local solitary waves of this kind in a variety cf physical systems. Note 
that it is sufficient to consider 6 only in the range 181 < n/2. 

Our concern in this short article is io report some preliminary results on the interaction 
between such non-local solitary waves through their common ‘pedestal’ of oscillatory waves. 
First, in the remaining part of this section to follow, we show ho\h a quantization of a chain 
of solitary waves can be imposed to produce a periodic solution s f  equation (1). Then, in 
the next section, we describe the interaction force between two neizhbouring solitary waves. 

Suppose we seek a periodic solution of equation (1) with period L.  If y L  >> 1, we 
seek an approximate solution of equation (1) in the form of an i ifinite chain of non-local 
solitary waves 

(9) 
-m 

where U, denotes the small-amplitude oscillatory waves between each solitary wave peak. 
Thus, in 0 c x‘ < L for instance, for yx’ >> 1 and y ( L  - x ‘ )  >> 1, where x’ = x - ct,  we 
obtain from (3) that 

(10) 

Here the first expression is derived from the solitary wave at x ‘  = 0 and the second from 
that at x’ = L.  For these to be consistent, we obtain the quantization condition, 

(11) 

where s is an arbitrary integer. The same result is obtained if we consider the interval 
r L  < x < ( r  + 1)L. Since y L  >> 1 and k h E - ’  it follows that L 2 n s c  and 2ncy >> 1. 
(11) agrees with that derived by Boyd (1991) using similar arguments, and we note that 
Boyd has called the periodic solutions (9) ‘nanopteroidal’ waves. Like the non-local solitary 
waves, with the parameter y fixed they form a one-parameter family of waves characterized 
by the phase shift 8. 

uw = a sin(k[x - ct] - 8) = -a sin(k[x - cf - L ]  + 6 ) .  

kL = (2F+ 1 ) r  +U 
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2. Solitary-wave interactions 

To determine the interaction force between these non-local solitary waves (3) we use the 
perturbation procedure of Karpman and Solov’ev (1981). which is equivalent in the present 
context to the more general formulation of Gorshkov and Ostrovsky (1981). Thus we 
consider two non-local solitary waves dl) and dZ), each given asymptotically by (3) and 
located at (1 ( t )  and .$Z(t)  respectively. Then we put 

U - u(l)(x - &(t ) )  + I P ( X  - t Z ( f ) )  + 6u (12) 

where 6u describes the small modification due to the interaction. Our strategy is to 
regard each solitary wave as characterized by a core with parameters y l ( t )  and yz(t) 
respectively, together with their co-propagating oscillatory tails with amplitudes q ( f )  and 
az(t) respectively. But it is necessary to suppose that the phase shifts S are the same. (The 
more general case of different phase shifts would seem to require a lengthier analysis than 
that developed here.) To leading order each core is described by the Korteweg-de Vries 
solitary wave (see (4)), and we compute the interaction force on this core due to the core 
of the other solitary wave and its oscillatory wave field. Thus, to leading order, the phase 
speed of each solitary wave is (see (5) )  

- 4Yi 
dti _ -  2 
dt 

while dyi/dt is found from the perturbation procedure of Karpman and Solov’ev (1981). 
We shall not give details since the outcome is that 

with an analogous expression for d2t2/dtZ. Here L = t z  - $1 is the distance between the 
solitary waves, while U ( L )  is the interaction potential given by 

U ( L )  = - 3U(”*U‘2’ dx. (15) 

The interaction potential is obtained from the nonlinear term in the Hamiltonian of the 
system (see Gorshkov and Ostrovsky 1981). The validity of this perturbation procedure 
requires that the solitary waves have nearly equal amplitudes (i.e. y~ yz) and be widely 
separated (vi L >> 1). 

First we compute the contribution to the potential U ( L )  from the solitary-wave core. 
This is given by 

L 

m 
U,(L) = - 3 U 3 X ) U S ( X  - L )  dx. (16) L 

Using the leading-order term in us (see(4)) we find that 

u,(L) - -256y5exp(-2yl) 

where here we suppose that y] E yz E y. Hence rhe interaction force is 

- au,/aL - -512y6exp(-2y~) 
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which agrees with the result of Karpman and Solov’ev (1981). As is well known, this is a 
repulsive force. 

Next we consider the interaction between the solitary-wave core and the ‘pedestal’ of 
oscillatory waves associated with the other solitary wave. This gives a contribution to the 
potential of 
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00 

Uw(L) = - 3u3(x)uw(x - L)dx. (19) 

Here we again approximate us by its leading term, while U, is found from (3). Since only 
the region near the solimy-wave core need be considered in  (19) we find that 

L 
u w  - -orsin(k(x - L )  + a )  (20) 

where we suppose that 011 sz a2 sz a and ff is given by (6). Hence we find that, after some 
simplification, 

2yzff U w ( L )  - -- sin(kL - 8 )  1: sech2 y x  coskx dx 
€2 

or 

(221 
4xb 

€ 5  
U w ( L )  - -- exp(-rr/hy) sin(kL - 8). 

Hence the interaction force is 

This is an oscillatory function of L and achieves a maximum attractive value when 
kL - 6 = (2s + 1)rr where s is an arbitrary integer. Note that this differs by a term 6 
from the quantization condition (1 I), since we have neglected here the phase matching 
between the two ‘pedestals’. But it is interesting to observe that if the quantization value 
of L ( I  I )  is substituted into (23) then the interaction force (23) becomes 

( 4 d W &  e x p ( - n / v )  (24) 

which is attractive, and independent of the phase shift S. Comparing this with the repulsive 
force (18) we conclude that the attractive force is stronger if 

exp(-rrlty) > 0 ,65(~y)~exp( -ZyL)  (25) 

where we have set IKI = 19.97. Considering only the dominant exponential terms we 
conclude that the attractive force is stronger if yL z n / 2 ~ y  or L > 2 7 r / ~ c  where c is the 
solitary-wave phase speed (see (5) ) .  We deduce that bound states u e  possible provided that 
L satisfies this inequality. 

This mechanism for the formation of bound states differs from those described recently 
for dissipative wave perturbations (see, for instance, Malomed (1991)), in that here the 
oscillatory wave field does not decay with distance from the core. Indeed, it is not 
obvious that the perturbation procedure of Karpman and Solov’ev (1981) can be used in 
the present case since, strictly speaking, it requires the perturbations to the solitary wave to 
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decay at infinity. A similar comment applies to the more general theory of Corshkov and 
Ostrovsky (1981). A related difficulty is that in calculating U&) we have only retained 
the leading-order term for U,, whereas a simple calculation shows that the higher-order 
terms will contribute to U&) at the same order of magnitude. For instance the integral 
of e 2  sech4 y x  coskx will give a term comparable to the integral of sech' y x  cos kx, and 
so on. Our procedure is consistent with the perturbation procedure formalism as given by 
Karpman and Solov'ev (1981). but the difficulty just mentioned indicates that expression 
(22) for U&) may not be quantitatively valid. Nevertheless we believe it gives an 
indication of the nature of this term, and in particular it seems clear that its proportionality 
to exp(-rr/ey) s in(k l  - 6) will remain if higher-order terms are included. 

Acknowledgments 

One of the authors (BAM) appreciates the hospitality of the School of Mathematics at the 
University of New South Wales, where this work was initiated. This work was supported 
by ARC grant 912493 (UNSW). 

References 

Boyd J P 1991 Physicn D 48 1 2 9 4 6  
Gorshkov K A and Ostrovsky L A 1981 Physica D 1 & 2 424-38 
Grimshnw R and Jashi N 1992 W&ly non-local solitw waves in n singularly perturbed Korteweg-de Vries 

Karpman V I and Solov'ev V V 1981 Physicn D 1 & 2 142-64 
Malomed B A 1991 Phys. Rev. 44 6954-7 
Pomeau Y, Ramani A and Gmmaricos B 1988 Pliysica D 31 127-34 

equation SIAM J. AppI Moth submitted 


